LE CYCLE CELLULAIRE ET SA RÉGULATION

1. Introduction.

<u>Division cellulaire</u>: tout type cellulaire.

-bactérie: division rapide, cycle court.

-homme: cellule œuf → plus de 10¹³ cellules!

Cycle cellulaire est contrôlé et coordonné.

Croissance cellulaire et réplication de l'ADN:

-eucaryote: unicellulaire (kinases).

-eucaryote: évolué→ kinases + facteurs de croissances.

Anomalies → cellules tumorales.

2. Les phases du cycle cellulaire.

2.1 Les cellules eucaryotes.

Quatre phases: G1, S, G2, M.

Cycle de 24h mais variable (entre 8h et plusieurs années).

Interphase: G1, S, G2: 95% du temps.

G pour gap car il ne se passe pas grand chose d'important.

2.2 Les cellules embryonnaires.

Alternance de phase M et S.

Œuf: taille importante.

Œuf de xénope: 1mm de diamètre.

7h > 4000 cellules.

2.3 Les cellules adultes.

Cellule en GO (neurones).

Division cellulaire sous l'influence des signaux EC:

Hors cycle de G1:

Schéma 1

Le point R est le point de restriction (sous dépendance des facteurs de croissance).

- 3. Analyse du cycle cellulaire.
- 3.1 Rappels sur le cycle.

Ex: cycle "type" de 24h, mais durée variable selon la cellule.

En fait de 8h à plusieurs années.

Phase/Nom/Quantité d'ADN/Durée:

G1/Gap1/2n/9-11h (environ 50% durée totale).

 $S/Synthèse/2n \rightarrow 4n/8h$.

G2/Gap2/4n/4h.

M/Mitose/4n/1h.

Schéma 2

L'hydroxy-urée est une drogue qui bloque la synthèse d'ADN \rightarrow bloque en G1. La vinblastine et la vincristine sont des drogues isolées de la pervenche, ce sont des alcaloïdes qui se fixe sur la β -tubuline; c'est un poison des faisceaux.

3.2 Durée du cycle et des différentes phases.

Durée totale= temps de doublement de la population cellulaire.

Le temps de doublement dépend:

- -durée des différentes phases.
- -du % des cellules en cycle.

Durée de la phase 5:

- -incubation des cellules avec thymidine tritiée (15min).
- -fixation des cellules (révélation: émulsion photo).
- -comptage des noyaux avec grains d'argent.
- -déterminer la fraction de cellules marquées.
- -cette fraction x durée totale= durée de la phase S.

Phase S= (4/12)x 24= 8h.

Durée de la phase M:

- -cellules avec chromosomes condensés.
- -déterminer la fraction de ces cellules= index mitotique.
- -ex: une cellule sur 12. durée totale= 24h.
- -durée de M= (1/12)x 24= 2h.

Durée de la phase G1:

- -cellules en fin de mitose: rondes, peu adhérentes.
- -ajouter de la thymidine tritiée.
- -temps nécessaire à l'incorporation: durée de G1.

<u>Durée de la phase G2:</u>

Durée totale - (G1 + S + M).

Cellules en 60:

- -suicide à la thymidine.
- -incubation longue (< 24h et forte dose de thymidine tritiée).
- -les cellules en cycle meurent.
- -les cellules en 60 survivent.

3.3 Mesure du contenu en ADN.

- -Différentes phases du cycle.
- -Agent intercalant de l'ADN:

- -iodure de propidium.
- -fluorescent.
- -Intensité de fluorescence → quantité d'ADN.
- -en GO et G1: 2n ADN.
- -en 5: entre 2n et 4n ADN.
- -G2 et M: 4n ADN.

Cytomètre de flux:

- -mesure fluorescence cellule par cellule.
- -graphe nombre de cellules en fonction intensité de fluorescence:

Schéma 3

Aire sous la courbe:

- -nombre de cellules.
- -durée de la phase.

Proportion de cellules= durée de la phase.

3.4 Application à la pathologie.

Degré d'aneuploïde.

- -nombre atypique des chromosomes.
- -indice de malignité= dans certains cancers (vessie).

Schéma 4

Valeur pronostic pour certains cancer.

-% de cellules en cycle→ évolutivité.

Adaptation des traitements.

4. Régulation du cycle cellulaire.

Signaux positifs et négatifs.

Signaux extra-cellulaire: environnementaux.

Signaux intra-cellulaire.

<u>Il existe plusieurs points de contrôle (x4):</u>

- → <u>ordonner la croissance, la réplication, ADN, la synthèse.</u>
- -En phase G1: le point R.
- -Transition G1-S.
- -Transition G2-M.

4.1 Signaux environnementaux.

Contrôle du point R et transition G2-M.

4.1.1 Passage du point R.

Appelé point S: "start", chez certaines levures.

Passage dépend des conditions environnementales.

<u>Tous les besoins doivent être assuré.</u> <u>Point de non retour.</u>

a. Les éléments nutritifs.

b. La taille de la cellule.

c. Matrice extra-cellulaire.

d. Les facteurs de croissances excitateurs:

PDGF, cellules mésenchymateuses.

EGF.

FGF, fibroblast growth factor.

NGF, axones.

IL2, LT.

IL3, EPO, TPO,...

Action locale, faible concentration.

RTK ou RCTK → MAP kinases → cyclines D.

Régulation densité cellulaire - inhibition de contact.

PDGF → fibroblastes quand lésion.

Absence de signaux → GO.

d. Les facteurs de croissance inhibiteurs:

TGF bêta (transforming growth factor).

<u>Inhibe la croissance</u> → <u>arrêt en G1.</u>

<u>Induit l'expression d'inhibiteur de CDK.</u>

CKI inhibe complexe cycline CDK.

p16, p21, p27.

4.1.2 Passage G2-M.

Certaines levures arrêtent le cycle:

-si taille insuffisante.

-si faible disponibilité en nutriments.

Ovocytes de vertébrés:

-bloque en G2 < 10ans.

-passage en M si stimulus hormonal.

4.2 Signaux internes.

Mis en évidence en 1970 par des expériences de fusion cellulaire.

-fusion d'une cellule S et d'une cellule $G1 \rightarrow$ noyau de la cellule G1 se met à dupliquer son ADN grâce à SPF.

- -fusion G1 et $G2 \rightarrow pas$ de duplication de l'ADN, donc le facteur SPF n'est plus présent dans les cellules en G2; c'est un facteur rapidement éliminé.
- -fusion G2 et $S \rightarrow G2$ ne se reduplique pas, donc une fois répliqué, SPF n'a plus d'action sur G2.
- -MPF, toutes les cellules y sont sensible, ce facteur est nécessaire au démarrage de la mitose.

Au cours du cycle cellulaire:

- -enchaînement d'événements séquentiels.
- -chaque étape dépend de la précédente.
- -apparition/disparition des molécules spécifiques.
- 4.3 Les régulateurs de la progressions du cycle cellulaire.

Cyclines.

CDK.

4.3.1 Les cyclines.

- -Cyclines D, E, A, B.
- -Cycle de synthèse et de régulation.
- -La 1e: cycline D → facteurs de croissances.
- -Protéines régulatrices sans actions enzymatiques.

4.3.2 Les CDK.

- -Sérine.
- -Conservées au cours de l'évolution.
- -Expression constante, degré de phosphorylation variable.

-Phase G1: Cycline D-CDK4 ou 6:

<u>A un rôle dans le passage du point R (car la cycline D sous contrôle de facteurs</u> de croissances).

-Fin de la phase G1: Cycline E-CDK2:

La cycline E a un début d'expression juste avant R puis s'associe à CDK2 → transition G1-5 puis CDK2 s'associe à la cycline A pour la phase S.

-Phase S: Cycline A-CDK2:

Ce complexe est SPF.

-Phase G2: Cycline A-CDK1:

Rq: CDK1= CDC2.

-Phase M: Cycline B-CDK1:

Ce complexe est MPF.

4.3.3 Régulation des CDK (au moins quatre mécanismes).

- -Association avec une cycline.
- -Une activation par phosphorylation du résidu thréonine 160.

-Une inhibition par la phosphorylation du résidu 14thréonine et 15tyrosine. La CDC25 élimine les résidus phosphorylés → complexe de nouveau actif. -CKI en venant s'associer au complexe actif → inactivation.

Il y a deux familles de CKF:

- -CIPKIP (telle que p21).
- -INK4 (telle que p16).

4.4 Contrôle du cycle cellulaire.

- 4.4.1 Passage de R.
- -Sous contrôle de cycline D.
- -Nécessite FC → complexes cycline D-CDK4 ou 6.

<u>La cellule passe R.</u>

Cycline D dégradée.

- -Si on enlève FC: la cellule passe en GO.
- -Anomalie de transduction signal:
- +++ cycline $D \rightarrow$ cancer (sein).

Mutation CKI, comme p16.

4.4.2 Transition G1-S.

Forme hypophosphorylée de p105 Rb:

- -induction de la cycline E puis A.
- -rôle des protéines p105 Rb et E2F.

p105 Rb mutée dans un certains nombre de cancers.

4.4.3 Transition G2-M.

Augmentation de la cycline B.

Cycline A-CDK1 active CyB-CDK1: MAF.

Phosphorylation de protéines impliquées dans la mitose:

- -histones: H1, condensation chromatines.
- -lamines: enveloppe nucléaire.
- -tau: dépolarisation microtubule.

Fragmentation Golgi et RE.

Si diminution de cycline $B \rightarrow arrêt$ en phase G2.

4.4.4 Progression dans la mitose.

Activation d'un système protéolytique → dégradation CyB. CDK1 déphosphorylé.

5. Contrôle de qualité du cycle cellulaire.

5.1 Arrêt en *G*1.

Lésions de l'ADN, irradiation UV.

Action assurée par p53.

- -phosphorylée.
- <u>-acétylée.</u>
- -activation de p21 (CKI) → Inhibition de CyE, A-CDK2.

<u>Si lésions trop importantes</u> → <u>apoptose</u>.

- -augmentation Bax.
- -diminution Bc2.

p53= gardien du génome.

- -mutée > 50% des cancers.
- -protéines anti-oncogènes= suppresseur de tumeur.

E6 dégrade p53, E7 dégrade p105 Rb.

5.2 Arrêt en G2.

<u>ADN mal répliqué, endommagé</u> → <u>arrêt fin de G2.</u>

5.3 Arrêt en M.

Mauvais alignement des chromosomes.

Arrêt en métaphase.

61→ 5: stop si mauvais état de l'ADN.

Fin de G2: stop si ADN mal ou incomplètement dupliqué.

Fin de M: stop si chromosomes mal alignés.

6. Contrôle à long terme de la croissance et de la division cellulaire.

6.1 Cellules normales.

Programme intrinsèque: nombre de divisions limité.

30 à 50 cycles puis:

- -arrêt du cycle: télomères (se raccourcissent à chaque division, horloge biologique).
- -sénescence.
- -mort cellulaire.

6.2 Cellules cancéreuses.

Division non contrôlée.

Non soumises à inhibition de contact.

Indépendances d'ancrages: faible adhérence:

- -au substrat (intégrines).
- -aux cellules voisines.

Indépendance FC.

Pas de sénescence.

Cellules immortelles.

Cellules tumorales:

-injection à l'animal:

-colonisation d'autres tissus. -nombreuses mutations.

Anomalies des régulations du cycle.
CyD augmente.
CDK4 augmente.
CKI diminue.
pRb diminue.
p53 mutée.